Generation of polychromatic projection for dedicated breast computed tomography simulation using anthropomorphic numerical phantom
نویسندگان
چکیده
Numerical simulations are fundamental to the development of medical imaging systems because they can save time and effort in research and development. In this study, we developed a method of creating the virtual projection images that are necessary to study dedicated breast computed tomography (BCT) systems. Anthropomorphic software breast phantoms of the conventional compression type were synthesized and redesigned to meet the requirements of dedicated BCT systems. The internal structure of the breast was randomly constructed to develop the proposed phantom, enabling the internal structure of a naturally distributed real breast to be simulated. When using the existing monochromatic photon incidence assumption for projection-image generation, it is not possible to simulate various artifacts caused by the X-ray spectrum, such as the beam hardening effect. Consequently, the system performance could be overestimated. Therefore, we considered the polychromatic spectrum in the projection image generation process and verified the results. The proposed method is expected to be useful for the development and optimization of BCT systems.
منابع مشابه
Monte Carlo Simulation for Polychromatic X-Ray Fluorescence Computed Tomography with Sheet-Beam Geometry
X-ray fluorescence computed tomography (XFCT) based on sheet beam can save a huge amount of time to obtain a whole set of projections using synchrotron. However, it is clearly unpractical for most biomedical research laboratories. In this paper, polychromatic X-ray fluorescence computed tomography with sheet-beam geometry is tested by Monte Carlo simulation. First, two phantoms (A and B) filled...
متن کاملInitial Experience with a Cone-beam Breast Computed Tomography-guided Biopsy System
OBJECTIVE To evaluate our initial experience with a cone-beam breast computed tomography (BCT)-guided breast biopsy system for lesion retrieval in phantom studies for use with a cone-beam BCT imaging system. MATERIALS AND METHODS Under the Institutional Review Board approval, a phantom biopsy study was performed using a dedicated BCT-guided biopsy system. Fifteen biopsies were performed on ea...
متن کاملUtilization of an optimum low-pass filter during filtered back-projection in the reconstruction of single photon emission computed tomography images of small structures
Introduction:Low-pass filters eliminate noise, and accordingly improve the quality of filtered back-projection (FBP) in the reconstruction of single photon emission computed tomography (SPECT) images. This study aimed at selection of an optimum low-pass filter for FBP reconstruction of SPECT images of small structures. Material and Methods:Sp...
متن کاملA Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom
Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D) XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion...
متن کاملFast System Matrix Calculation in CT Iterative Reconstruction
Introduction: Iterative reconstruction techniques provide better image quality and have the potential for reconstructions with lower imaging dose than classical methods in computed tomography (CT). However, the computational speed is major concern for these iterative techniques. The system matrix calculation during the forward- and back projection is one of the most time- cons...
متن کامل